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Notation

Given an elliptic curve E over Fq for q odd.

• Frobenius endomorphism:

π : E → E, (x, y) 7→ (xq, yq).

• Characteristic polynomial of π

π2 − tπ + q = 0.

• Call t the trace of the Frobenius.

• #E(Fq) = q + 1 − t and t satisfies |t| ≤ 2
√
q.
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Compute t mod ℓ

Consider a prime ℓ.

• ℓ-torsion E[ℓ] = {P ∈ E : [ℓ]P = P∞}

• The restriction π′ of the Frobenius endomorphism to E[ℓ]
satisfies

π′2 − tℓ π
′ + qℓ = 0 in Fℓ

where tℓ = t mod ℓ and qℓ = q mod ℓ are uniquely
determined.

Schoof (1984): determine tℓ for O(log(q)) primes ℓ such that
∏

ℓ > 4
√
q. Then the CRT yields

t mod
∏

ℓ ∈ [−2
√
q, 2

√
q].
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Division polynomials

Let K be a field of characteristic 6= 2, 3.

Let m ≥ 1. The mth division polynomial ψm ∈ Z[A,B,X, Y ]
vanishes in all m-torsion points, i.e., for P = (x, y) in E(K̄),
P 6∈ E[2],

[m]P = P∞ ⇔ ψm(x, y) = 0.

Theorem
For m ≥ 3

[m](x, y) =

(

x− ψm−1 ψm+1

ψ2
m

,
ψm+2 ψ

2
m−1 − ψm−2 ψ

2
m+1

4y ψ3
m

)

.
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Recursion

Given E : Y 2 = X3 +AX +B over K.

ψ1 = 1,

ψ2 = 2Y,

ψ3 = 3X4 + 6AX2 + 12BX −A2,

ψ4 = 4Y (X6 + 5AX4 + 20BX3 − 5A2X2 − 4ABX − 8B2 −A3)

and

ψ2m+1 = ψm+2ψ
3
m
− ψ3

m+1ψm−1 if m ≥ 2,
2Y ψ2m = ψm(ψm+2ψ

2
m−1 − ψm−2 ψ

2
m+1) if m ≥ 3.

• For odd m we have ψm(X,Y ) = fm(X) ∈ Z[A,B,X ] with
deg fm = (m2 − 1)/2.

• For even m we have ψm(X,Y ) = Y fm(X) with
fm(X) ∈ Z[A,B,X ] and deg fm = (m2 − 4)/2.
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Elkies primes

• Torsion structure: E[ℓ] ∼= F
2
ℓ for ℓ prime.

• π′ acts as a linear operator on E[ℓ].

• Call ℓ an Elkies prime if

T 2 − tℓT + qℓ = (T − λ)(T − µ)

with λ, µ in Fℓ.

• In this case the eigenvalues λ and µ of π are defined over
Fℓ.

• We get qℓ = λ · µ and thus

tℓ = λ+ µ = λ+ qℓ/λ.

• Restrict search of t mod ℓ to a subgroup of E[ℓ].
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Atkin and SEA

If T 2 − tℓT + qℓ does not split over Fℓ the prime ℓ is called an
Atkin prime.

• Determine the rth power of the Frobenius such that there
is a πr-invariant subgroup of E[ℓ].

• Then t mod ℓ satisfies

t2 ≡ (ζr + 2 + ζ−1
r )q

for an rth root of unity ζr.

• Cannot uniquely determine tℓ.

SEA (Schoof-Elkies-Atkin algorithm)

• Use both Elkies’s and Atkin’s method to determine tℓ for
primes ℓ until

∏

ℓ > 4
√
q.
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Determine tℓ in the Elkies case

• Let P in E[ℓ] be an eigenpoint corresponding to an
eigenvalue λ, i.e., π(P ) = [λ]P .

• The point P generates a π-invariant subgroup C of order ℓ
of E[ℓ].

• Since tℓ = λ+ qℓ/λ determining tℓ in C means finding an
eigenvalue of the Frobenius in Fℓ.

• New ’check equation’. Find λ ∈ {1, . . . , ℓ− 1} such that

π(P ) = [λ]P

for a non-trivial point of a subgroup of E[ℓ].
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Elkies factor

Let C be a π-invariant subgroup of E[ℓ].

• Determine a factor fℓ,λ(X) of fℓ(X) in Fq[X] such that

(x, y) ∈ C ⇔ fℓ,λ(x) = 0.

• We get

fℓ,λ(X) =
∏

±P∈C
P 6=P∞

(X − x(P )).

• Degree: deg fℓ,λ = (ℓ− 1)/2.
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Usual approach with modular forms

• Determine if there is a degree-ℓ isogeny whose kernel is a
subgroup C of E[ℓ] by looking at the splitting behaviour of
the ℓth modular polynomial Φℓ(X, j) over Fq.

• Compute such an ℓ-isogeny.

• Use Vélu’s formulas to compute such an isogenous curve
E′ ∼= E/C.

• Cost for determining fℓ,λ is O(ℓ2+o(1)).
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Cyclic subgroups of E[ℓ]

• Let P1 and P2 generate the ℓ-torsion group E[ℓ].

• The ℓ+ 1 cyclic subgroups C of E[ℓ] are given by

C1 = 〈P1〉 and C2 = 〈P2〉

and for k = 3, . . . , ℓ+ 1

Ck = 〈P1 + [k − 2]P2〉.

• The subgroups are pairwise disjoint except for the
point P∞.

• We have

E[ℓ] =

ℓ+1
⋃

k=1

Ck.
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An alternative polynomial

• Consider the polynomial

Ũℓ =
∏

P∈E[ℓ]\{P∞}



T −
∑

1≤i≤(ℓ−1)/2

x([i]P )



 in Fq[T ].

• If P and Q lie in the same subgroup

∑

1≤i≤(ℓ−1)/2

x([i]P ) =
∑

1≤i≤(ℓ−1)/2

x([i]Q).

• Thus Ũℓ = U ℓ−1
ℓ for a polynomial Uℓ in Fq[T ] of

degree ℓ+ 1.
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Criterion for finding Elkies primes

Theorem
There is a π-invariant subgroup C of E[ℓ], i.e., the prime ℓ is an
Elkies prime if and only if the polynomial Uℓ has a zero in Fq of
multiplicity 1.
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Revisiting the multiplication map

Consider an odd prime ℓ which is coprime to q.

• Let [m](x, y) = (gm(x, y), hm(x, y)). Since gm is a
polynomial in x write gm(x).

• Note that gm(x) = g−m(x) for any point (x, y) in E.

• Let
p1(x) =

∑

1≤i≤ ℓ−1

2

gi(x) mod ψℓ.
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Computing Uℓ

Lemma (Charlap, Coley, and Robbins (1991))

U
ℓ−1

2

ℓ = c−1 · Resx (T − p1(x), ψℓ(x)) .

where c ∈ Fq.

Proof.

Resx (T − p1(x), ψℓ(x)) = c ·
∏

±(x,y)∈E
ψℓ(x)=0

(T − p1(x))

= c ·
ℓ+1
∏

j=1

∏

±(x,y)∈
Cj\{P∞}

(T − p1(x)) = c ·
ℓ+1
∏

j=1

(

T − p1(x(Pj))
)(ℓ−1)/2

,

where Cj = 〈Pj〉 are the ℓ+ 1 subgroups of order ℓ of E[ℓ].
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Properties of zeros of Uℓ

• Let ℓ be an Elkies prime, and 〈P 〉 a π-invariant subgroup
of E[ℓ].

• So Uℓ has a zero r in Fq which corresponds to the sum of
points in 〈P 〉.

• Consider

h(X) =

(ℓ−1)/2
∑

j=1

gj(X) mod ψℓ.

• Let fℓ,λ(X) =
∏

1≤i≤(ℓ−1)/2(X − x([i]P )).

• Then

r ≡ h(X) mod fℓ,λ(X) in Fq[X].
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The Elkies-factor

• It follows that fℓ,λ(X) divides h(X) − r in Fq[X].

• Moreover fℓ,λ divides ψℓ.

Theorem
Let fℓ,λ be an Elkies factor and r ∈ Fq a zero of Uℓ. Then

fℓ,λ(X) = gcd
(

h(X) − r, ψℓ(X)
)

.

• Hence the Elkies-factor fℓ,λ can be computed by purely
algebraic means: resultant and GCD computation.

Complexity

• Resultant computation for U
(ℓ−1)/2
ℓ : O(ℓ2M(ℓ2) log(ℓ2)).

• Cut down to O(ℓM(ℓ2) log(ℓ2)) for Uℓ exploiting the fact
that we know the resultant yields a (ℓ− 1)/2th power.

• Can we do better?
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