
Wild McEliece

Christiane Peters

Technische Universiteit Eindhoven

joint work with Daniel J. Bernstein and Tanja Lange

Diskret Matematik Seminar
Lyngby

November 5, 2010

Motivation

• Code-based cryptography was proposed in 1978 by
McEliece.

• Encryption is very efficient: matrix-vector multiplication.

• Patterson’s decoding algorithm for binary Goppa codes also
makes decryption efficient.

• Drawback of the system: public key is large.

1/27

1. Recap: the McEliece cryptosystem

2. Wild McEliece

3. Decoding Wild Goppa codes

4. Attacks

5. Parameters

Encryption

• Given public system parameters n, k, w.

• The public key is a random-looking k × n matrix Ĝ with
entries in Fq.

• Encrypt a message m ∈ F
k
q as

mĜ + e

where e ∈ F
n
q is a random error vector of weight w.

• Need to correct w errors to find m.

• Decoding is not easy without knowing the structure of the
code generated by Ĝ.

2/27

Secret key

The public key Ĝ has a hidden Goppa-code structure allowing
fast decoding:

Ĝ = SGP

where

• G is the generator matrix of a Goppa code Γ of length n
and dimension k and error-correcting capability w;

• S is a random k × k invertible matrix; and

• P is a random n × n permutation matrix.

The triple (G,S, P) forms the secret key.

Note: Detecting this structure, i.e., finding G given Ĝ, seems
even more difficult than attacking a random Ĝ.

3/27

Decryption

The legitimate receiver knows S, G and P with Ĝ = SGP and
a decoding algorithm for Γ.

How to decrypt y = mĜ + e.

1. Compute yP−1 = mSG + eP−1.

2. Apply the decoding algorithm of Γ to find mSG which is a
codeword in Γ from which one obtains m.

4/27

Goppa codes

• Fix a prime power q; a positive integer m, a positive integer
n ≤ qm; an integer t < n

m
;

• distinct elements a1, . . . , an in Fqm;

• and a polynomial g(x) in Fqm [x] of degree t such that
g(ai) 6= 0 for all i.

The Goppa code Γq(a1, . . . , an, g) consists of all words
c = (c1, . . . , cn) in F

n
q with

n
∑

i=1

ci

x − ai

≡ 0 (mod g(x))

• Γq(a1, . . . , an, g) has length n and dimension k ≥ n − mt.

• The minimum distance is at least deg g + 1 = t + 1
(in the binary case 2t + 1).

5/27

Reducing the key size (1)

• Bernstein, Lange, P., PQCrypto 2008: binary-Goppa-code
parameters achieving 128-bit security produce a
1537536-bit key.

• Smaller-key variants use other codes such as Reed-Solomon
codes, generalized Reed-Solomon codes, quasi-cyclic codes,
quasi-dyadic codes or geometric Goppa codes.

6/27

Quasi-dyadic codes

Misoczki-Barreto. Compact McEliece Keys from Goppa Codes.
SAC 2009.

• Hide quasi-dyadic Goppa code as quasi-dyadic public key.

• Certain instances broken (Faugere et al, Eurocrypt 2010;
Gauthier Umana and Leander, 2010).

• Binary quasi-dyadic Goppa codes still hold up.
http://eprint.iacr.org/2009/187

• For 128-bit security the dyadic public key has only 32768
key bits.

7/27

Reducing the key size (2)

• Goppa codes are the most confidence-inspiring choice.

• Using Goppa codes over larger fields decreases the key size
at the same security level against information-set decoding
(P., PQCrypto 2010).

• A Goppa code over F31 leads to a 725741-bit key for
128-bit security.

• Drawback: can correct only ⌊(t + 1)/2⌋ errors if q > 2
(vs. t in the binary case).

• ⇒ Wild Goppa codes.

8/27

1. Recap: the McEliece cryptosystem

2. Wild McEliece

3. Decoding Wild Goppa codes

4. Attacks

5. Parameters

Proposal

Use the McEliece cryptosystem with Goppa codes of the form

Γq(a1, . . . , an, gq−1)

where g is an irreducible monic polynomial in Fqm[x] of degree t.

• Note the exponent q − 1 in gq−1.

• We refer to these codes as wild Goppa codes.

9/27

Minimum distance of wild Goppa codes

Theorem (Sugiyama-Kasahara-Hirasawa-Namekawa, 1976)

Γq(a1, . . . , an, gq−1) = Γq(a1, . . . , an, gq)

for a monic squarefree polynomial g(x) in Fqm[x] of degree t.

• The case q = 2 of this theorem is due to Goppa, using a
different proof that can be found in many textbooks.

10/27

Proof

1. Γq(a1, . . . , an, gq−1) ⊇ Γq(a1, . . . , an, gq):

• If
∑

i

ci

x − ai

= 0 in Fqm[x]/gq

then certainly

∑

i

ci

x − ai

= 0 in Fqm [x]/gq−1.

11/27

Proof (cont.)

2. Γq(a1, . . . , an, gq−1) ⊆ Γq(a1, . . . , an, gq) :

• Consider any (c1, c2, . . . , cn) ∈ F
n
q such that

∑

i ci/(x − ai) = 0 in Fqm [x]/gq−1.

• Find an extension k of Fqm so that g splits into linear
factors in k[x].

• Then
∑

i

ci

x − ai

= 0 in k[x]/gq−1,

so
∑

i

ci

x − ai

= 0 in k[x]/(x − r)q−1

for each factor x − r of g.

12/27

Proof (cont.)

• The elementary series expansion

1

x − ai

= −
1

ai − r
−

x − r

(ai − r)2
−

(x − r)2

(ai − r)3
− · · ·

then implies

∑

i

ci

ai − r
+(x−r)

∑

i

ci

(ai − r)2
+(x−r)2

∑

i

ci

(ai − r)3
+· · · = 0

in k[x]/(x − r)q−1.

• I.e.,
∑

i ci/(ai − r) = 0,
∑

i ci/(ai − r)2 = 0,
. . . ,
∑

i ci/(ai − r)q−1 = 0.

13/27

Proof (cont.)

• Take the qth power of the equation
∑

i ci/(ai − r) = 0, to
obtain

∑

i ci/(ai − r)q = 0.

• Work backwards to see that
∑

i ci/(x − ai) = 0 in
k[x]/(x − r)q.

• By hypothesis g is the product of its distinct linear factors
x − r.

• Therefore gq is the product of the coprime polynomials
(x − r)q, and

∑

i ci/(x − ai) = 0 in k[x]/gq .

• I.e.,
∑

i

ci

x − ai

= 0 in Fqm [x]/gq.

• And thus (c1, . . . , cn) ∈ Γq(a1, . . . , an, gq).

14/27

Error-correcting capability

• Since Γq(. . . , g
q−1) = Γq(. . . , g

q) the minimum distance of
Γq(. . . , g

q−1) equals the one of Γq(. . . , g
q) and is thus

≥ deg gq + 1 = qt + 1.

• We present an alternant decoder that allows efficient
correction of ⌊qt/2⌋ errors for Γq(. . . , g

q−1).

• Note that the number of efficiently decodable errors
increases by a factor of q/(q − 1) while the dimension
n − m(q − 1)t of Γq(. . . , g

q−1) stays the same.

15/27

Sidestep: Number fields

• Consider the ring of integers OL of a number field L and
Q1, Q2, . . ., the distinct maximal ideals of OL.

• A prime p ramifies in a number field L if the unique
factorization pOL = Qe1

1 Qe2

2 · · · has an exponent ei larger
than 1.

• Each Qi with ei > 1 is ramified over p; this ramification is
wild if ei is divisible by p.

16/27

The“wild”terminology

• If OL/p is Fp[x]/f for f a monic polynomial in Fp[x].
Then Q1, Q2, . . . correspond to the irreducible factors of f ,
and e1, e2, . . . to the exponents in the factorization of f .

• The ramification corresponding to an irreducible factor φ of
f is wild if and only if the exponent is divisible by p.

• We also refer to ϕp as being wild, and refer to the
corresponding Goppa codes as wild Goppa codes.

• The traditional concept of wild ramification is defined by
the characteristic of the base field.

• We take the freedom to generalize the definition of wildness
to use the size of Fq rather than just the characteristic
of Fq.

17/27

1. Recap: the McEliece cryptosystem

2. Wild McEliece

3. Decoding Wild Goppa codes

4. Attacks

5. Parameters

Polynomial description of Goppa codes

Recall that

Γ = Γq(a1, . . . , an, gq)

⊆ Γqm(a1, . . . , an, gq)

=

{(

f(a1)

h′(a1)
, . . . ,

f(an)

h′(an)

)

: f ∈ gq
Fqm[x],deg f < n

}

where h = (x − a1) · · · (x − an).

• View target codeword c = (c1, . . . , cn) ∈ Γ as a sequence

(

f(a1)

h′(a1)
, . . . ,

f(an)

h′(an)

)

of function values, where f is a multiple of gq of degree
below n.

18/27

Classical decoding
Given y, a word of distance ⌊qt/2⌋ from our target codeword.
Reconstruct c from y = (y1, . . . , yn) as follows:

• Interpolate

y1h
′(a1)

g(a1)q
,
y2h

′(a2)

g(a2)q
, . . . ,

ynh′(an)

g(an)q

into a degree-n polynomial ϕ ∈ Fqm[x].

• Compute the continued fraction of ϕ/h to degree ⌊qt/2⌋.:
i.e., apply the Euclidean algorithm to h and ϕ, stopping
with the first remainder v0h − v1ϕ of degree < n − ⌊qt/2⌋.

• Compute f = (ϕ − v0h/v1)g
q.

• Compute c = (f(a1)/h
′(a1), . . . , f(an)/h′(an)).

This algorithm uses n1+o(1) operations in Fqm using standard
FFT-based subroutines.

• A Python script can be found on my website:
http://www.win.tue.nl/~cpeters/wild.html

19/27

http://www.win.tue.nl/~cpeters/wild.html

Decoders

• Can use any Reed-Solomon decoder to reconstruct f/gq

from the values f(a1)/g(a1)
q, . . . , f(an)/g(an)q with

⌊qt/2⌋ errors.

• This is an illustration of the following sequence of standard
transformations:

Reed–Solomon decoder ⇒ generalized Reed–Solomon decoder

⇒ alternant decoder ⇒ Goppa decoder.

• The resulting decoder corrects ⌊(deg g)/2⌋ errors for
general Goppa codes Γq(a1, . . . , an, g).

• In particular, ⌊q(deg g)/2⌋ errors for Γq(a1, . . . , an, gq);
and so ⌊q(deg g)/2⌋ errors for Γq(a1, . . . , an, gq−1).

20/27

List decoding

• Using the Guruswami–Sudan list-decoding algorithm we can
efficiently correct n −

√

n(n − qt) > ⌊qt/2⌋ errors in the
function values f(a1)/g(a1)

q, . . . , f(an)/g(an)q.

• Not as fast as a classical decoder but still takes polynomial
time.

• Consequently we can handle n −
√

n(n − qt) errors in the
wild Goppa code Γq(a1, . . . , an, gq−1).

Note:

• This algorithm can produce several possible codewords c.
No problem for CCA2-secure variants of the McEliece
system (Kobara, Imai, PKC 2001).

• We do not claim that this algorithm is the fastest possible
decoder. Bernstein (2008) obtains for q = 2 the same
error-correcting capability using a more complicated
Patterson-like algorithm.

21/27

1. Recap: the McEliece cryptosystem

2. Wild McEliece

3. Decoding Wild Goppa codes

4. Attacks

5. Parameters

Attacks on Wild McEliece

• The wild McEliece cryptosystem includes, as a special case,
the original McEliece cryptosystem.

• A complete break of the wild McEliece cryptosystem would
therefore imply a complete break of the original McEliece
cryptosystem.

22/27

Polynomial-searching attacks

• There are approximately qmt/t monic irreducible
polynomials g of degree t in Fqm [x], and therefore
approximately qmt/t choices of gq−1.

• An attacker can try to guess the Goppa polynomial gq−1

and then apply Sendrier’s“support-splitting algorithm”to
compute a permutation-equivalent code using the set
{a1, . . . , an}.

• The support-splitting algorithm takes {a1, . . . , an} as an
input along with g.

23/27

Defenses

The first defense is well known and appears to be strong:

• Keep qmt/t extremely large, so that guessing gq−1 has
negligible chance of success. Our recommended parameters
have qmt/t dropping as q grows.

The second defense is unusual (strength is unclear):

• It is traditional, although not universal, to take n = 2m and
q = 2, so that the only possible set {a1, . . . , an} is F2m .

• Keep n noticeably lower than qm, so that there are many
possible subsets {a1, . . . , an} of Fqm .

• Can the support-splitting idea be generalized to handle
many sets {a1, . . . , an} simultaneously?

24/27

Information-set decoding

• The top threat against the original McEliece cryptosystem
is information-set decoding.

• The same attack also appears to be the top threat against
the wild McEliece cryptosystem for F3, F4, etc.

• Use complexity analysis of state-of-the-art information-set
decoding for linear codes over Fq from [P. 2010] to find
parameters (q, n, k, t) for Wild McEliece.

25/27

1. Recap: the McEliece cryptosystem

2. Wild McEliece

3. Decoding Wild Goppa codes

4. Attacks

5. Parameters

Key sizes for various q at a 128-bit security level
McEliece with Γq(a1, . . . , an, gq−1) and ⌊(q − 1)t/2⌋, ⌊qt/2⌋,
⌊qt/2⌋ + 1, or ⌊qt/2⌋ + 2 added errors.

 0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

 2 3 4 5 7 8 9 11 13 16 17 19 23 25 27 29 31 32

ke
y

bi
ts

q

(q-1)t/2
qt/2

qt/2+1
qt/2+2

26/27

PQCrypto 2011

Nov 29 – Dec 2, Taipei

http://pq.crypto.tw/pqc11/

Thank you for your attention!

27/27

	Recap: the McEliece cryptosystem
	Wild McEliece
	Decoding Wild Goppa codes
	Attacks
	Parameters

