
Applications of Information-set Decoding in

Cryptanalysis

Christiane Peters

Technical University of Denmark

MSR Talk Series

Redmond – March 14, 2013

Outline

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

1/42

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

Coding Theory

• The sender uses an encoder to transform a message into a
codeword by adding redundancy.

• Goal: protect against errors in a noisy channel.

sender encoder

channel
E

// decoder receiver

• The receiver uses a decoding algorithm to correct errors
which might have occurred during transmission.

3/42

Linear encoding

• A message m ∈ Fk
2 is encoded into a codeword x ∈ Fn

2

which satisfies
Hx = 0

for an r × n-matrix H where r = n − k ≥ 0.

Example:

• Let H = (A | Ir), then encoding m = (m1, . . . ,mk) into
x = (x1, . . . , xn) simply means setting

x1 = m1, . . . , xk = mk

and then choosing the remaining xi so that Hx = 0.

4/42

Error-correcting linear codes

The linear code C with parity-check matrix H ∈ Fr×n
2 consists of

all codewords x ∈ Fn
2 such that Hx = 0.

Properties:

• The codewords in C form a linear subspace of dimension
n − r of Fn

2.

• We say that C has length n and dimension n − r .

5/42

Example: Hamming code

A parity-check matrix for the (7, 4, 3)-Hamming code is given by

H =





1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



 .

Example of a codeword: x = (1001100).

6/42

Hamming metric

• The Hamming distance of x, y ∈ Fn
2 is

dist(x, y) = #{i ∈ {1, . . . , n} : xi 6= yi}.

• The Hamming weight of a word x ∈ Fn
2 is

wt(x) = #{i ∈ {1, . . . , n} : xi 6= 0}.

• The minimum distance of a linear code C is defined as

d(C) = min
x,y∈C
x6=y

dist(x, y) = min
x∈C
x6=0

wt(x).

7/42

Minimum distance

x1b b b b
x2

code with d = 3

b b b b b
x1 x2

code with d = 4

8/42

Syndromes

• The syndrome of a vector y in Fn
2 with respect to H is the

vector Hy in Fr
2.

Given y = x+ e for x ∈ C and e ∈ Fn
2. By linearity

Hy = H(x + e) = Hx+ He = He

since Hx = 0.

• The space Fn
2 can be partitioned into 2r cosets y + C .

• A word e of minimum weight in y+C is called coset leader.

sender encoder

channel
E

// decoder receiver

m
�

�

// x
error e

///o/o/o/o/o/o/o/o x+ e
✤

// m′

9/42

Decoding problem

Syndrome-decoding problem:

◮ given an r × n binary matrix H,

◮ a vector s ∈ Fr
2,

◮ and w ≥ 0,

find e ∈ Fn
2 of weight ≤ w such that He = s.

10/42

Decoding needs structure

There are lots of code families with fast decoding algorithms

• E.g., Goppa codes/alternant codes, Reed-Solomon codes,
Gabidulin codes, Reed-Muller codes, algebraic-geometric
codes, convolutional codes, LDPC codes etc.

All those decoding algorithms use information on the structure
of the code.

11/42

Generic decoding is hard

However, given a random binary matrix H,

Berlekamp, McEliece, van Tilborg (1978) showed that the
general decoding problem is NP-hard.

• The best known generic decoding algorithms all take
exponential time.

• About 2(0.5+o(1))n/ log n binary operations required for a
code of length n, dimension ≈ 0.5n, and minimum distance
≈ n/ log n.

12/42

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

Code-based Cryptography

• McEliece proposed a public-key cryptosystem based on
error-correcting codes in 1978.

• Secret key is a linear error-correcting code with an efficient
decoding algorithm.

• Public key is a transformation of the secret inner code
which is hard to decode.

14/42

A code-based cryptosystem

Consider Niederreiter’s dual version of McEliece’s cryptosystem.

• The public key is an r × n matrix H and an integer w ≥ 0.

Encryption of a message m:

1. Use a constant-weight-word encoder to convert message m

into a word e ∈ Fn
2 of weight w .

2. Send the ciphertext s = He.

Constant-weight-word encoding is a bijection Φ between
messages of fixed length and the set of words of length n and
weight w .

15/42

Secret key

Trapdoor one-way function: the public key H has a hidden
Goppa-code structure allowing fast decoding of w errors:

H = MH ′P

where

• H ′ is the parity-check matrix of a Goppa code Γ of length n

and dimension n − r and minimum distance 2w + 1,

• M is a random r × r invertible matrix, and

• P is a random n × n permutation matrix.

The triple (H ′,M,P) forms the secret key.

16/42

Decryption

Decryption of a ciphertext s = He using the secret
decomposition H = MH ′P .

1. Compute M−1s = H ′Pe.

2. Use the decoding algorithm for Γ to find the weight-w
word Pe.

3. Compute m using Φ−1(e) after multiplication with P−1.

17/42

Conversions

• This is the “text-book” version of code-based crypto.

• Plaintexts are not randomized.

• Use CCA2-secure conversions by Kobara–Imai (PKC 2001)
when implementing the systems.

18/42

Security assumptions

Key security

• relies on the difficulty of retrieving the secret code from the
public code; i.e., decompose H into MH ′P to get
specifications for a decoding algorithm for H ′.

Single-target attacks

• Decryption security relies on hardness of the
syndrome-decoding problem assuming that H does not leak
information about its structure.

Security level

• A system has b-bit security if it takes at least 2b bit
operations to decrypt a single ciphertext.

19/42

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

Generic decoding

Best known generic decoding methods rely on so-called
information-set decoding or in short: ISD.

Quite a long history:

1962 Prange; 1981 Clark (crediting Omura); 1988 Lee–Brickell;
1988 Leon; 1989 Krouk; 1989 Stern; 1989 Dumer;
1990 Coffey–Goodman; 1990 van Tilburg; 1991 Dumer;
1991 Coffey–Goodman–Farrell; 1993 Chabanne–Courteau;
1993 Chabaud; 1994 van Tilburg; 1994 Canteaut–Chabanne;
1998 Canteaut–Chabaud; 1998 Canteaut–Sendrier;
2008 Bernstein–Lange–P.; 2009 Finiasz–Sendrier; 2010 P.;
2011 Bernstein–Lange–P.; 2011 May–Meurer–Thomae;
2012 Becker–Joux–May–Meurer.

21/42

ISD in Magma

• Papers in the last 5 years were aiming at attacking actual
cryptographic parameters,

• focusing on either implementations or asymptotic analyses.

Basic ISD algorithms (until year 1998) are implemented in
Magma:

◮ DecodingAttack

◮ McEliecesAttack

◮ LeeBrickellsAttack

◮ LeonsAttack

◮ SternsAttack

◮ CanteautChabaudsAttack

22/42

Generic decoder

Build a decoder which gets as input

• a parity-check matrix H,

• a ciphertext y ∈ Fn
2, and

• an integer w ≥ 0.

The algorithm tries to determine an error vector e of
weight = w such that

s = Hy = He.

23/42

Problem

1 1 1 0

1 0 0 1

0 1 1 0

0 1 0 1

1 1 1 1

...
...

...
...

...

...

0

1

0

1

0

c1c2c3 cn s = c2 + c3 + c18 + c20 + c24 +

Given an r × n matrix, a syndrome s.

Goal: find w columns of H with xor s.

24/42

Row randomization

1 1 1 0

1 0 0 1

0 1 1 0

0 1 0 1

1 1 1 1

...
...

...
...

...

...

0

1

0

1

0

c1c2c3 cn s = c2 + c3 + c18 + c20 + c24 +

Can arbitrarily permute rows without changing the problem.

Goal: find w columns of H with xor s.

24/42

Row randomization

1 0 0 1

1 1 1 0

0 1 1 0

0 1 0 1

1 1 1 1

...
...

...
...

...

...

1

0

0

1

0

c1c2c3 cn s = c2 + c3 + c18 + c20 + c24 +

Can arbitrarily permute rows without changing the problem.

Goal: find w columns of H with xor s.

24/42

Column normalization

1 0 0 1

1 1 1 0

0 1 1 0

0 1 0 1

1 1 1 1

...
...

...
...

...

...

1

0

0

1

0

c1c2c3 cn s = c2 + c3 + c18 + c20 + c24 +

Can arbitrarily permute columns without changing the problem.

Goal: find w columns of H with xor s.

24/42

Column normalization

0 1 0 1

1 1 1 0

1 0 1 0

1 0 0 1

1 1 1 1

...
...

...
...

...

...

1

0

0

1

0

c1c2c3 cn s = c1 + c3 + c18 + c20 + c24 +

Can arbitrarily permute columns without changing the problem.

Goal: find w columns of H with xor s.

24/42

Information-set decoding

1 0 1 · · · · · · · · · · · · 1 1 0 0 · · · · · · · · · 0

0 1 1 · · · · · · · · · · · · 1 0 1 0 · · · · · · · · · 0

1 1 0 · · · · · · · · · · · · 0 0 0 1 · · · · · · · · · 0

. . .

1 0 1 · · · · · · · · · · · · 1 0 0 0 · · · · · · · · · 1

0

1

1

0

...

0

c1c2c3 ckck+1 cn s = c3 + c7 + c28 + c30 +

Can add one row to another ⇒ build identity matrix.

Goal: find w columns which xor s.

25/42

Basic information-set decoding

Prange (1962):

• Perhaps xor involves none of the first n − r columns.

• If so, immediately see that s is constructed from w columns
from the identity submatrix.

• If not, re-randomize and restart – this is a probabilistic
algorithm.

• Expect about
(nw)
(r

w)
iterations.

26/42

Lee–Brickell

2 col’s of
k = n − r

w − 2
col’s of r

1

1

1

. . .

1

ci cj s

Check for each pair (i , j) with 1 < i < j ≤ k if s+ ci + cj has
weight w − 2.

27/42

Decreasing the number of iterations

Lee–Brickell (1988):

• More likely that xor involves exactly 2 of the first n − r

columns.

• Check for each pair (i , j) with 1 < i < j ≤ n − r if
s+ ci + cj has weight w − 2.

• Expect about
(nw)

(n−r
2)(

r
w−2)

iterations, each checking
(

n−r
2

)

sums s+ ci + cj .

28/42

Decreasing the number of iterations

Lee–Brickell (1988):

• More likely that xor involves exactly p of the first n − r

columns.

• Check for each pair (i , j) with 1 < i < j ≤ n − r if
s+ ci + cj has weight w − p.

• Expect about
(n

w)
(n−r

p)(r

w−p)
iterations, each checking

(

n−r
p

)

sums s+ ci1 + · · · + cip .

Note

• Cost for computing these sums grows with p.

• Choosing p = w
2 would minimize # iterations but increase

cost of each iterations enormously; p = 2 is optimal.

28/42

Leon, Krouk, Stern
2 col’s of
n − r

0 col’s/
ℓ

w − 2
col’s of r − ℓ

1

1

1

. . .

1

ci cj s

Check for each pair (i , j) with 1 < i < j ≤ n − r if s+ ci + cj
has weight w − 2 and the first ℓ bits all zero.

• Early abort if s+ ci + cj 6= 0 on first ℓ bits.

29/42

Improvements

Leon (1989), Krouk (1989):

• Check for each (i , j) if s+ ci + cj has weight w − 2 and the
first ℓ bits all zero.

• Fast to test, iteration cost decreases.

• Expect about
(nw)

(n−r
2)(

r−ℓ
w−2)

iterations – only a few more than

for Lee–Brickell.

30/42

Collision decoding

Stern (1989): enforce 0’s on first ℓ bits using a
meet-in-the-middle approach ⇒ square-root improvement.

Strategy

• Split first n − r columns in two disjoint sets of equal size;
draw ci ’s from the left, cj ’s from the right set.

• Find collisions between first ℓ bits of s+ ci and the first ℓ
bits of cj .

• For each collision, check if s+ ci + cj has weight w − 2.

31/42

Collision decoding

Stern (1989): enforce 0’s on first ℓ bits using a
meet-in-the-middle approach ⇒ square-root improvement.

Strategy

• Split first n − r columns in two disjoint sets of equal size;
draw ci ’s from the left, cj ’s from the right set.

• Find collisions between first ℓ bits of s+ ci1 + · · ·+ cip/2
and the first ℓ bits of cj1 + · · · + cjp/2 .

• For each collision, check if
s+ ci1 + · · ·+ cip/2 + cj1 · · ·+ cjp/2 has weight w − p.

• Expect about
(n
w)

((n−r)/2
p/2)

2
(r−ℓ
w−p)

iterations.

31/42

Ball-collision decoding
p col’s of
n − r

q col’s/
ℓ

w − p − q
col’s of r − ℓ

1

1

1

. . .

1

ci1 ci2 cj1 cj2 s

• Disjoint split of columns on the left.

• Allow a few zeros in the previously “forbidden zone”.

32/42

Ball-collision decoding

Bernstein, Lange, P. (2011):

• Find collisions between the Hamming ball of radius q
around s+ ci1 + · · ·+ cip and the Hamming ball of radius q
around cj1 + · · · + cjp .

• Main theorem: (asymptotically) exponential speedup of
ball-collision decoding over Stern’s collision decoding.

• Reference implementation of ball-collision decoding:
http://cr.yp.to/ballcoll.html

33/42

http://cr.yp.to/ballcoll.html

Using representations
p col’s of
n− r + ℓ

w − p
col’s of r − ℓ

1

. . .

1

ci1 ci2 ci3 ci4 s

• Only partial Gauss elimination.

• Consider selected sums of p columns out of n − r + ℓ.

34/42

Increase number of p-sums

May–Meurer–Thomae (2011), Becker–Joux–May–Meurer
(2012):

• Increase number of words with 0’s on first ℓ positions by
removing the split of n− r columns into in two disjoint sets.

• Do not check all
(

k
p

)

sums s+ ci1 + · · ·+ cip .

• Examine a fraction of those sums using representation
technique by Howgrave-Graham–Joux (2010).

• Main theorem: (asymptotically) exponential speedup of
representation technique over ball-collision decoding.

35/42

Error distributions

n− r r

Plain information-set decoding

0 w

Lee–Brickell
p w − p

ℓ r − ℓ
Leon

p 0 w − p

Stern
p/2 p/2 0 w − p

Ball-collision decoding

p/2 p/2 q/2 q/2 w − p − q

n − r + ℓ r − ℓ
Representations

p/2 + ε, p/2 + ε w − p

36/42

Asymptotics

Recent papers are mostly asymptotic speedups.

• Gains are significant for coding-theoretic values for the
minimum distance (Gilbert–Varshamov radius).

• For cryptographic applications, only small differences in
cost between Stern’s algorithm, ball-collision decoding,
representation decoding.

• Bernstein, Lange, P., van Tilborg (2009): asymptotic
analysis of ISD for McEliece minimum distances
d ≈ n/ log n.

37/42

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

Practical ISD

Bernstein, Lange, P. (2008):

• use variant of Stern’s algorithm

2 2 0 46

to extract a plaintext from a ciphertext by decoding w = 50
errors in a binary code with n = 210 and r = 500.

• Faster by a factor of more than 150 than previous attacks;
within reach of a moderate cluster of computers.

Break of original McEliece parameters:

• About 200 (academic) computers involved, with about 300
cores; computation finished in under 90 days; used about
8000 core-days.

39/42

Key sizes

• Suggestion: for 128-bit security of the McEliece
cryptosystem take a binary Goppa code with n = 2960,
r = 672, and w = 57 errors.

• The public-key size here is 187kB for 128-bit security
against ISD.

40/42

Challenges

Go to

http://pqcrypto.org/wild-challenges.html

• For different setups, challenges are indexed by field size and
by key size.

• Each challenge consists of a public key and a ciphertext.

• Find matching plaintext (or even to find the secret keys).

Inspired by latticechallenge.org project at TU Darmstadt.

• Want: cryptanalytic benchmarks.

• Build confidence in new setups (e.g., wild McEliece).

41/42

http://pqcrypto.org/wild-challenges.html
latticechallenge.org

Conclusion

• Many variants of information-set-decoding algorithms.

• All of them have exponential running time.

• Useful to estimate security levels in code-based (and
lattice-based?) cryptography.

• Simple Pari/GP script and more sophisticated C-code using
GMP/MPFR/MPFI to estimate parameters:

https://bitbucket.org/cbcrypto/isdfq/

Thank you for your attention!

42/42

https://bitbucket.org/cbcrypto/isdfq/

	Basics
	Code-based Cryptography
	Information-Set Decoding
	Implications for Cryptography

