Applications of Information-set Decoding in Cryptanalysis

Christiane Peters

Technical University of Denmark

MSR Talk Series Redmond – March 14, 2013

Outline

- 1. Basics
- 2. Code-based Cryptography
- 3. Information-Set Decoding
- 4. Implications for Cryptography

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

Coding Theory

- The sender uses an encoder to transform a message into a codeword by adding redundancy.
- Goal: protect against errors in a noisy channel.

• The receiver uses a decoding algorithm to correct errors which might have occurred during transmission.

Linear encoding

• A message $\mathbf{m} \in \mathbf{F}_2^k$ is encoded into a codeword $\mathbf{x} \in \mathbf{F}_2^n$ which satisfies

 $H\mathbf{x} = \mathbf{0}$

for an $r \times n$ -matrix H where $r = n - k \ge 0$.

Example:

• Let $H = (A | I_r)$, then encoding $\mathbf{m} = (m_1, \dots, m_k)$ into $\mathbf{x} = (x_1, \dots, x_n)$ simply means setting

$$x_1 = m_1, \ldots, x_k = m_k$$

and then choosing the remaining x_i so that $H\mathbf{x} = \mathbf{0}$.

Error-correcting linear codes

The linear code C with parity-check matrix $H \in \mathbf{F}_2^{r \times n}$ consists of all codewords $\mathbf{x} \in \mathbf{F}_2^n$ such that $H\mathbf{x} = \mathbf{0}$.

Properties:

• The codewords in C form a linear subspace of dimension n - r of \mathbf{F}_2^n .

• We say that C has length n and dimension n - r.

Example: Hamming code

A parity-check matrix for the (7, 4, 3)-Hamming code is given by

Example of a codeword: $\mathbf{x} = (1001100)$.

Hamming metric

• The Hamming distance of $\mathbf{x}, \mathbf{y} \in \mathbf{F}_2^n$ is

$$dist(\mathbf{x}, \mathbf{y}) = \#\{i \in \{1, ..., n\} : x_i \neq y_i\}.$$

• The Hamming weight of a word $\mathbf{x} \in \mathbf{F}_2^n$ is

$$wt(\mathbf{x}) = \#\{i \in \{1, \ldots, n\} : x_i \neq 0\}.$$

• The minimum distance of a linear code C is defined as

$$d(C) = \min_{\substack{\mathbf{x}, \mathbf{y} \in C \\ \mathbf{x} \neq \mathbf{y}}} \operatorname{dist}(\mathbf{x}, \mathbf{y}) = \min_{\substack{\mathbf{x} \in C \\ \mathbf{x} \neq \mathbf{0}}} \operatorname{wt}(\mathbf{x}).$$

Minimum distance

Syndromes

• The syndrome of a vector **y** in **F**ⁿ₂ with respect to *H* is the vector *H***y** in **F**^r₂.

Given $\mathbf{y} = \mathbf{x} + \mathbf{e}$ for $\mathbf{x} \in C$ and $\mathbf{e} \in \mathbf{F}_2^n$. By linearity

$$H\mathbf{y} = H(\mathbf{x} + \mathbf{e}) = H\mathbf{x} + H\mathbf{e} = H\mathbf{e}$$

since $H\mathbf{x} = \mathbf{0}$.

- The space \mathbf{F}_2^n can be partitioned into 2^r cosets $\mathbf{y} + C$.
- A word **e** of minimum weight in $\mathbf{y} + C$ is called coset leader.

Decoding problem

Syndrome-decoding problem:

- given an $r \times n$ binary matrix H,
- ▶ a vector $\mathbf{s} \in \mathbf{F}_2^r$,
- and $w \ge 0$,

find $\mathbf{e} \in \mathbf{F}_2^n$ of weight $\leq w$ such that $H\mathbf{e} = \mathbf{s}$.

Decoding needs structure

There are lots of code families with fast decoding algorithms

• E.g., Goppa codes/alternant codes, Reed-Solomon codes, Gabidulin codes, Reed-Muller codes, algebraic-geometric codes, convolutional codes, LDPC codes etc.

All those decoding algorithms use information on the structure of the code.

Generic decoding is hard

However, given a random binary matrix H,

Berlekamp, McEliece, van Tilborg (1978) showed that the general decoding problem is NP-hard.

- The best known generic decoding algorithms all take exponential time.
- About 2^{(0.5+o(1))n/log n} binary operations required for a code of length n, dimension ≈ 0.5n, and minimum distance ≈ n/log n.

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

Code-based Cryptography

• McEliece proposed a public-key cryptosystem based on error-correcting codes in 1978.

• Secret key is a linear error-correcting code with an efficient decoding algorithm.

• Public key is a transformation of the secret inner code which is hard to decode.

A code-based cryptosystem

Consider Niederreiter's dual version of McEliece's cryptosystem.

• The public key is an $r \times n$ matrix H and an integer $w \ge 0$.

Encryption of a message **m**:

- 1. Use a constant-weight-word encoder to convert message **m** into a word $\mathbf{e} \in \mathbf{F}_2^n$ of weight w.
- 2. Send the ciphertext $\mathbf{s} = H\mathbf{e}$.

Constant-weight-word encoding is a bijection Φ between messages of fixed length and the set of words of length n and weight w. Secret key

Trapdoor one-way function: the public key H has a hidden Goppa-code structure allowing fast decoding of w errors:

H = MH'P

where

- H' is the parity-check matrix of a Goppa code Γ of length n and dimension n - r and minimum distance 2w + 1,
- M is a random $r \times r$ invertible matrix, and
- *P* is a random $n \times n$ permutation matrix.

The triple (H', M, P) forms the secret key.

Decryption

Decryption of a ciphertext $\mathbf{s} = H\mathbf{e}$ using the secret decomposition H = MH'P.

- 1. Compute $M^{-1}\mathbf{s} = H'P\mathbf{e}$.
- 2. Use the decoding algorithm for Γ to find the weight-*w* word $P\mathbf{e}$.
- 3. Compute **m** using $\Phi^{-1}(\mathbf{e})$ after multiplication with P^{-1} .

Conversions

• This is the "text-book" version of code-based crypto.

• Plaintexts are not randomized.

• Use CCA2-secure conversions by Kobara–Imai (PKC 2001) when implementing the systems.

Security assumptions

Key security

• relies on the difficulty of retrieving the secret code from the public code; i.e., decompose *H* into *MH'P* to get specifications for a decoding algorithm for *H'*.

Single-target attacks

• Decryption security relies on hardness of the syndrome-decoding problem assuming that *H* does not leak information about its structure.

Security level

• A system has *b*-bit security if it takes at least 2^{*b*} bit operations to decrypt a single ciphertext.

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

Generic decoding

Best known generic decoding methods rely on so-called information-set decoding or in short: ISD.

Quite a long history:

1962 Prange; 1981 Clark (crediting Omura); 1988 Lee–Brickell;

1988 Leon; 1989 Krouk; 1989 Stern; 1989 Dumer;

1990 Coffey-Goodman; 1990 van Tilburg; 1991 Dumer;

- 1991 Coffey–Goodman–Farrell; 1993 Chabanne–Courteau;
- 1993 Chabaud; 1994 van Tilburg; 1994 Canteaut-Chabanne;
- 1998 Canteaut-Chabaud; 1998 Canteaut-Sendrier;
- 2008 Bernstein-Lange-P.; 2009 Finiasz-Sendrier; 2010 P.;
- 2011 Bernstein-Lange-P.; 2011 May-Meurer-Thomae;
- 2012 Becker–Joux–May–Meurer.

ISD in Magma

- Papers in the last 5 years were aiming at attacking actual cryptographic parameters,
- focusing on either implementations or asymptotic analyses.

Basic ISD algorithms (until year 1998) are implemented in Magma:

- DecodingAttack
- McEliecesAttack
- LeeBrickellsAttack
- LeonsAttack
- SternsAttack
- CanteautChabaudsAttack

Generic decoder

Build a decoder which gets as input

- a parity-check matrix H,
- a ciphertext $\mathbf{y} \in \mathbf{F}_2^n$, and
- an integer $w \ge 0$.

The algorithm tries to determine an error vector \mathbf{e} of weight = w such that

$$\mathbf{s} = H\mathbf{y} = H\mathbf{e}.$$

Problem

Given an $r \times n$ matrix, a syndrome **s**.

Row randomization

Can arbitrarily permute rows without changing the problem.

Row randomization

Can arbitrarily permute rows without changing the problem.

Column normalization

Can arbitrarily permute columns without changing the problem.

Column normalization

Can arbitrarily permute columns without changing the problem.

Information-set decoding

Can add one row to another \Rightarrow build identity matrix.

Goal: find w columns which xor s.

Basic information-set decoding

Prange (1962):

- Perhaps xor involves none of the first n r columns.
- If so, immediately see that **s** is constructed from *w* columns from the identity submatrix.
- If not, re-randomize and restart this is a probabilistic algorithm.

• Expect about
$$\frac{\binom{n}{w}}{\binom{r}{w}}$$
 iterations.

Lee-Brickell

Check for each pair (i, j) with $1 < i < j \le k$ if $\mathbf{s} + \mathbf{c}_i + \mathbf{c}_j$ has weight w - 2.

Decreasing the number of iterations

Lee-Brickell (1988):

- More likely that xor involves exactly 2 of the first *n r* columns.
- Check for each pair (i, j) with 1 < i < j ≤ n − r if
 s + c_i + c_j has weight w − 2.

• Expect about $\frac{\binom{n}{w}}{\binom{n-r}{2}\binom{r}{w-2}}$ iterations, each checking $\binom{n-r}{2}$ sums $\mathbf{s} + \mathbf{c}_i + \mathbf{c}_j$.

Decreasing the number of iterations

Lee-Brickell (1988):

- More likely that xor involves exactly *p* of the first *n*−*r* columns.
- Check for each pair (i, j) with $1 < i < j \le n r$ if $\mathbf{s} + \mathbf{c}_i + \mathbf{c}_j$ has weight w p.

• Expect about $\binom{\binom{n}{p}}{\binom{n-r}{p}\binom{r}{w-p}}$ iterations, each checking $\binom{n-r}{p}$ sums $\mathbf{s} + \mathbf{c}_{i_1} + \cdots + \mathbf{c}_{i_p}$.

Note

- Cost for computing these sums grows with *p*.
- Choosing $p = \frac{w}{2}$ would minimize # iterations but increase cost of each iterations enormously; p = 2 is optimal.

Check for each pair (i, j) with $1 < i < j \le n - r$ if $\mathbf{s} + \mathbf{c}_i + \mathbf{c}_j$ has weight w - 2 and the first ℓ bits all zero.

• Early abort if $\mathbf{s} + \mathbf{c}_i + \mathbf{c}_j \neq \mathbf{0}$ on first ℓ bits.

Improvements

Leon (1989), Krouk (1989):

Check for each (i, j) if s + c_i + c_j has weight w − 2 and the first ℓ bits all zero.

• Fast to test, iteration cost decreases.

• Expect about
$$\frac{\binom{n}{w}}{\binom{n-r}{2}\binom{r-\ell}{w-2}}$$
 iterations – only a few more than for Lee–Brickell.

Collision decoding

Stern (1989): enforce 0's on first ℓ bits using a meet-in-the-middle approach \Rightarrow square-root improvement.

Strategy

- Split first n r columns in two disjoint sets of equal size; draw c_i's from the left, c_j's from the right set.
- Find collisions between first l bits of s + c_i and the first l bits of c_j.
- For each collision, check if $\mathbf{s} + \mathbf{c}_i + \mathbf{c}_j$ has weight w 2.

Collision decoding

Stern (1989): enforce 0's on first ℓ bits using a meet-in-the-middle approach \Rightarrow square-root improvement.

Strategy

- Split first n r columns in two disjoint sets of equal size; draw c_i's from the left, c_j's from the right set.
- Find collisions between first ℓ bits of s + c_{i1} + · · · + c_{ip/2} and the first ℓ bits of c_{j1} + · · · + c_{jp/2}.
- For each collision, check if $\mathbf{s} + \mathbf{c}_{i_1} + \cdots + \mathbf{c}_{i_{p/2}} + \mathbf{c}_{j_1} \cdots + \mathbf{c}_{j_{p/2}}$ has weight w - p.

• Expect about
$$\frac{\binom{n}{w}}{\binom{(n-r)/2}{p/2}^2\binom{r-\ell}{w-p}}$$
 iterations.

- Disjoint split of columns on the left.
- Allow a few zeros in the previously "forbidden zone".

Ball-collision decoding

Bernstein, Lange, P. (2011):

- Find collisions between the Hamming ball of radius q around s + c_{i1} + ··· + c_{ip} and the Hamming ball of radius q around c_{j1} + ··· + c_{jp}.
- Main theorem: (asymptotically) exponential speedup of ball-collision decoding over Stern's collision decoding.
- Reference implementation of ball-collision decoding: http://cr.yp.to/ballcoll.html

Using representations

- Only partial Gauss elimination.
- Consider selected sums of p columns out of $n r + \ell$.

Increase number of *p*-sums

May–Meurer–Thomae (2011), Becker–Joux–May–Meurer (2012):

• Increase number of words with 0's on first ℓ positions by removing the split of n - r columns into in two disjoint sets.

• Do not check all
$$\binom{k}{p}$$
 sums $\mathbf{s} + \mathbf{c}_{i_1} + \cdots + \mathbf{c}_{i_p}$.

- Examine a fraction of those sums using representation technique by Howgrave-Graham–Joux (2010).
- Main theorem: (asymptotically) exponential speedup of representation technique over ball-collision decoding.

Error distributions

Asymptotics

Recent papers are mostly asymptotic speedups.

- Gains are significant for coding-theoretic values for the minimum distance (Gilbert-Varshamov radius).
- For cryptographic applications, only small differences in cost between Stern's algorithm, ball-collision decoding, representation decoding.
- Bernstein, Lange, P., van Tilborg (2009): asymptotic analysis of ISD for McEliece minimum distances d ≈ n/ log n.

1. Basics

2. Code-based Cryptography

3. Information-Set Decoding

4. Implications for Cryptography

Practical ISD

Bernstein, Lange, P. (2008):

• use variant of Stern's algorithm

to extract a plaintext from a ciphertext by decoding w = 50 errors in a binary code with $n = 2^{10}$ and r = 500.

• Faster by a factor of more than 150 than previous attacks; within reach of a moderate cluster of computers.

Break of original McEliece parameters:

• About 200 (academic) computers involved, with about 300 cores; computation finished in under 90 days; used about 8000 core-days.

Key sizes

 Suggestion: for 128-bit security of the McEliece cryptosystem take a binary Goppa code with n = 2960, r = 672, and w = 57 errors.

• The public-key size here is 187kB for 128-bit security against ISD.

Challenges

Go to

http://pqcrypto.org/wild-challenges.html

- For different setups, challenges are indexed by field size and by key size.
- Each challenge consists of a public key and a ciphertext.
- Find matching plaintext (or even to find the secret keys).

Inspired by latticechallenge.org project at TU Darmstadt.

- Want: cryptanalytic benchmarks.
- Build confidence in new setups (e.g., wild McEliece).

Conclusion

- Many variants of information-set-decoding algorithms.
- All of them have exponential running time.
- Useful to estimate security levels in code-based (and lattice-based?) cryptography.
- Simple Pari/GP script and more sophisticated C-code using GMP/MPFR/MPFI to estimate parameters:

https://bitbucket.org/cbcrypto/isdfq/

Thank you for your attention!